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Abstract. Classical uniaxially anisotropic Heisenberg and XY antiferromagnets in a field along the easy
axis on a square lattice are analysed, applying ground state considerations and Monte Carlo techniques.
The models are known to display antiferromagnetic and spin-flop phases. In the Heisenberg case, a single-
ion anisotropy is added to the XXZ antiferromagnet, enhancing or competing with the uniaxial exchange
anisotropy. Its effect on the stability of non-collinear structures of biconical type is studied. In the case
of the anisotropic XY antiferromagnet, the transition region between the antiferromagnetic and spin-flop
phases is found to be dominated by degenerate bidirectional fluctuations. The phase diagram is observed
to resemble closely that of the XXZ antiferromagnet without single-ion anisotropy.

PACS. 68.35.Rh Phase transitions and critical phenomena – 75.10.Hk Classical spin models – 05.10.Ln
Monte Carlo methods

1 Introduction

Two-dimensional uniaxially anisotropic Heisenberg anti-
ferromagnets in a field along the easy axis have received
a renewed interest in recent years, experimentally as well
as theoretically. On the experimental side, especially lay-
ered cuprates exhibit interesting properties due to an in-
terplay of spin and charge [1–8]. Intriguing phase diagrams
have been obtained for other quasi two-dimensional anti-
ferromagnets as well, showing, typically, multicritical be-
haviour [9–12]. Excellent reviews on such exciting multi-
critical phenomena, including bi- and tetracritical points,
have appeared quite recently [13,14].

On the theoretical side, recent studies [15–23] on the
square lattice XXZ Heisenberg antiferromagnet have sub-
stantially extended previous and other analyses [24–28] on
this prototypical model and closely related models. The
XXZ model is described by the Hamiltonian

HXXZ = J
∑

i,j

[
∆(Sx

i Sx
j + Sy

i Sy
j ) + Sz

i Sz
j

] − H
∑

i

Sz
i

(1)
where the sum runs over all pairs of neighbouring sites,
i and j, of the lattice, J(> 0) is the coupling constant,
and ∆ is the exchange anisotropy parameter, with ∆ = 0
corresponding to the Ising limit and ∆ = 1 to the isotropic
Heisenberg case. H is the external field along the easy axis,
the z-axis. Sα

i , α = x, y and z, are the three components
of classical or quantum spins.
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For many years [24], the model is known to display,
at low temperatures and small fields, a long-range or-
dered antiferromagnetic (AF) phase, and, at higher fields
and low temperatures, a spin-flop (SF) phase with alge-
braically decaying correlations. However, the multicritical
point, where the AF, SF and paramagnetic phases meet,
had been subject to controversial suggestions.

In early renormalisation group calculations [29–31] the
XXZ Heisenberg model and its extensions to n-component
antiferromagnets with uniaxial anisotropy have been in-
vestigated. Various possible multicritical scenarios have
been proposed, depending on the number of spin compo-
nents, n, and the dimension of the lattice, d. The possible
scenarios include a bicritical point of O(n) symmetry, a
tetracritical point, and a critical end point, depending on
the number of critical lines meeting at the special mul-
ticritical point, and determining the critical properties.
Actually, an ε-expansion to low order, favours, for n = 3,
i.e. for the XXZ antiferromagnet, the bicritical point. Cer-
tainly, the bicritical point can not be realized in two di-
mensions at a non-zero temperature, T > 0, because it
would violate the rigorously proven, well-known theorem
of Mermin and Wagner [32].

Recent Monte Carlo studies and ground-state consid-
erations provide strong evidence for the multicritical point
being a ‘hidden tetracritical point’ at T = 0 in the classi-
cal XXZ model [16,17,19]. Indeed a narrow phase governed
by ‘biconical’ [31] (BC) fluctuations separates the AF and
SF phases at low temperatures. At that zero temperature
special point, AF, SF, and BC structures have the same
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Fig. 1. Antiferromagnetic (a), spin-flop (b, d), and biconi-
cal (c) as well as bidirectional (e) structures which may occur
as ground states in the XXZ antiferromagnet and variants,
(a, b, c), or in the anisotropic XY antiferromagnet (a, d, e).
The tilt angles are defined with respect to the easy axis, being
the z-axis in the XXZ and the x-axis in the XY case.

energy, leading to a high degeneracy [19]. Actually, the im-
portance of the non-collinear BC structures, see Figure 1,
for the ground state and the phase diagram of the classi-
cal XXZ antiferromagnet had been overlooked in previous
work. On the other hand, already a few decades ago, it had
been noticed that such BC structures may be stabilised by
adding to the XXZ model further anisotropy terms, like
cubic terms, or longer-range interactions [33–35].

Extending significantly our very recent short commu-
nication [22], the aim of the present article is twofold:
Firstly, we shall study the effect of adding a single-ion
anisotropy to the XXZ model, which may either enhance
the uniaxial exchange anisotropy, ∆, or it may compete
with it by being a planar anisotropy, depending on the sign
of the coupling strength of the single-ion anisotropy. In
both cases, the special point of high degeneracy (the hid-
den tetracritical point) does not survive. Resulting phase
diagrams will be determined using Monte Carlo tech-
niques. Secondly, we shall consider the two-component,
n = 2, variant of the XXZ antiferromagnet. In that case,
in principle, a bicritical point, of O(2) symmetry, would be
allowed to occur at T > 0, being, in two dimensions, in the
Kosterlitz-Thouless universality class [36]. Note that now
BC structures are replaced by ‘bidirectional’ (BD) struc-
tures, see Figure 1. Again, in addition to ground state
considerations, the phase diagram will be determined us-
ing Monte Carlo simulations.

It may be worth mentioning that the SF and BC as
well as BD structures may be interpreted as AF structures
with the antiferromagnetic ordering occurring now in the
plane or direction perpendicular to the easy axis. In any
event, we shall use here the rather common and figurative
notation with the terms ‘spin-flop’ [37] and ‘biconical’ [31].

The paper is organised as follows: In the next section,
the models will be introduced and ground state properties
will be discussed, emphasising the role of non-collinear,
BC and BD, structures. Phase diagrams and critical prop-
erties, as obtained from large-scale simulations, will be
presented in the then following section. A short summary
concludes the article.

2 Models and ground state properties

In order to study the impact of biconical or bidirectional
structures on phase diagrams of uniaxially anisotropic an-
tiferromagnets on a square lattice, we consider two dif-
ferent classical models with spins of length one. Firstly, a
single-ion anisotropy is added to the XXZ model, equa-
tion (1), so that the Hamiltonian reads

HD = HXXZ + D
∑

i

(Sz
i )2 (2)

where the single-ion anisotropy may, depending on the
sign of D, enhance the uniaxial exchange anisotropy ∆
(0 ≤ ∆ < 1), when D < 0, or it may introduce a compet-
ing planar anisotropy, D > 0. Secondly, the anisotropic
XY antiferromagnet is studied, described by the Hamilto-
nian

HXY = J
∑

i,j

[
Sx

i Sx
j + ∆Sy

i Sy
j

] − H
∑

i

Sx
i (3)

being the two-component, n = 2, variant of the XXZ an-
tiferromagnet, where the x-axis is the easy axis.

The ground state configurations, at T = 0, are fixed
by the spin orientations on the two sublattices, A and B,
formed by neighbouring sites of the square lattice. The
configurations may be determined in a straightforward
way [33,34,38].

For the XXZ model with single-ion anisotropy, equa-
tion (2), the xy-components of the spins order antifer-
romagnetically, having rotational symmetry. The orienta-
tions of the spins on the two sublattices are then given by
their tilt angles, ΘA and ΘB, with respect to the easy axis,
the z-axis, see Figure 1. From minimisation of the energy,
the actual values of the tilt angles in the ground state
configurations follow as a function of the anisotropy pa-
rameters ∆ and D as well as the field H . For calculational
convenience, one may substitute ΘA and ΘB by combina-
tions of the z-components of the sublattice magnetisations
(per sublattice site), Sz

A = cosΘA and Sz
B = cosΘB.

For negative couplings D < 0, only AF, SF, and fer-
romagnetic (F) ground states occur, see Figure 2 (set-
ting ∆ = 0.8, as before [16,17,19,22,24]). As depicted
in the figure, AF ground states are stable for low fields,
H < Hc1, while F ground states are obtained for high
fields, H > Hc2. The two critical fields are given by, for
D > −2∆J ,

Hc1 = 2
√

(2J)2 − (2J∆ + D)2 (4)

and
Hc2 = 4J(1 + ∆) + 2D. (5)

For intermediate fields H , Hc1 < H < Hc2, the ground
states comprise SF configurations, but they are squeezed
out for a more negative single-ion term, D < −2∆J , fos-
tering the uniaxial alignment of the spins, see Figure 2.

Note that for D < 0, in the limit ∆ = 1, when the uni-
axial anisotropy of the Hamiltonian is solely due to the
single-ion term, no biconical structures exist as ground
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Fig. 2. Ground state phase diagram for ∆ = 0.8. The filled
circle denotes the highly degenerate point at D = 0 and H =
2.4J .

states. In contrast, when the uniaxial anisotropy is solely
due to the exchange anisotropy, i.e. in the XXZ antifer-
romagnet, D = 0, BC structures are ground states at the
critical field Hc1 = 4J

√
1 − ∆2, see equation (4) [19,22].

At this highly degenerate point the BC structures take on
tilt angles interrelated by [19]

ΘB = arccos

( √
1 − ∆2 − cosΘA

1 − √
1 − ∆2 cosΘA

)
(6)

interpolating continuously between the AF and SF config-
urations, with the tilt angle ΘA ranging from 0 to π. One
may calculate ground state values of various quantities at
the degenerate point, assuming that each degenerate con-
figuration with the interrelated tilt angles occurs with the
same probability and taking into account the rotational
invariance of the spin components in the xy-plane.

As an example we mention the Binder cumulant [39]

Uz
st = 1 − 〈(Mz

st)
4〉/(3〈(Mz

st)
2〉) (7)

where the longitudinal staggered magnetisation Mz
st is de-

fined by Mz
st = (Sz

A − Sz
B)/2. The cumulant at the highly

degenerate point (T = 0, H = Hc1) as a function of ∆ is
shown in Figure 3. For instance, in the much studied case
∆ = 0.8, one obtains Uz

st = 0.3777... [38]. In simulating
small systems at low temperatures on approach to the de-
generate point for various values of ∆, we confirmed the
(numerically) exact result for the cumulant.

An interesting quantity for characterising the BC
structures is the probability of finding the tilt angle Θ,
p(Θ). At the degenerate point, one gets [38]

p(Θ) =
α sin Θ

1 − α cosΘ

[
ln

(
1 + α

1 − α

) ]−1

(8)
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Fig. 3. Binder cumulants Ux,z
st of the longitudinal staggered

magnetisations of the XXZ and anisotropic XY antiferromag-
nets at the highly degenerate point T = 0 and Hc1.

where α =
√

1 − ∆2/2. Obviously, there is no full O(3)
symmetry, as one may expect for a bicritical point of
Heisenberg type. One may reproduce that form of p(Θ)
by simulating, again, small systems at low temperatures
on approach to the highly degenerate point.

We now consider the case of a single-ion anisotropy
favouring a planar anisotropy, D > 0, competing with the
uniaxial exchange anisotropy ∆. Now, biconical structures
may become ground states in a finite, non-zero range of
fields, Hc1a < H < Hc1b, as depicted in Figure 2. The
critical field between the AF and BC ground states, Hc1a,
is given by

Hc1a = 2
√

(2J − D)2 − (2J∆)2 (9)

and the upper critical field, Hc1b, separating the BC and
SF ground states, is given by

Hc1b = 4
[
4J2 − (2J∆ + D)2

]
/Hc1a. (10)

At D = 2− 2∆, the two critical fields approach zero, and,
at larger planar anisotropies, there exists no AF ground
state.

Of course, the degeneracy in the BC structures occur-
ring at the special point (T = 0, H = Hc1) of the XXZ
model is now lifted, with the tilt angles, ΘA, ΘB , chang-
ing now continuously with the field H , starting with the
AF structure at Hc1a and ending with the SF structure at
Hc1b. The magnetisations on the A and B sublattices in
this biconical region are interrelated by [38]

Sz
A + Sz

B =

√

1 − (2J∆)2

(2J + D)2
(1 + Sz

ASz
B). (11)

The expression transforms into equation (6) for vanishing
single-ion anisotropy, D = 0.

The ground state properties of the anisotropic XY an-
tiferromagnet, equation (3), are closely related to those of
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the XXZ model, equation (1). There is also a high degener-
acy at the critical field separating the AF and SF ground
states, Hc1/J = 4

√
1 − ∆2, in this case due to bidirec-

tional structures. As depicted in Figure 1, the BD con-
figurations are characterised by tilt angles, ΘA and ΘB,
which are again defined with respect to the easy axis, be-
ing now the x-axis. Note that here the tilt angles may vary
from 0 to 2π. At the highly degenerate point, ΘA and ΘB

are interrelated analogously to equation (6).
At T = 0 and H = Hc1, various quantities of interest

may be calculated, assuming again that each configura-
tion with interrelated tilt angles, being an AF, a BD or a
SF state, occurs with the same probability. In contrast to
the XXZ case, there is now no planar rotational invariance
to be taken into account. For example, the dependence of
the Binder cumulant of the longitudinal staggered mag-
netisation, Ux

st, on the exchange anisotropy ∆ is included
in Figure 3. The probability p(Θ) for encountering the tilt
angle Θ is found to be

p(Θ) =
1

1 − α cosΘ

√
1 − α2

2π
(12)

where α =
√

1 − ∆2/2. Analogously to the XXZ case,
there is no full O(2) symmetry. Again, these ground state
results have been checked in simulations, as for the XXZ
case.

3 Phase diagrams

To study the effect of the presence of BC or BD structures
on the phase diagrams of uniaxially anisotropic antiferro-
magnets on a square lattice, we shall consider the XXZ
Heisenberg antiferromagnet with an additional single-ion
anisotropy, equation (2), as well as the anisotropic XY
antiferromagnet, equation (3). In all cases the exchange
anisotropy anisotropy is set ∆ = 0.8, as before.

Large-scale Monte Carlo simulations have been per-
formed, studying lattices with up to L2 = 2402 spins, with
runs of typically up to, for larger lattices, 108 Monte Carlo
steps per spin, averaging over several realizations to es-
timate standard deviations for the computed quantities.
These quantities include the specific heat, sublattice, stag-
gered, and total magnetisations, longitudinal (relative to
the direction of the applied field) and transverse staggered
susceptibilities, Binder cumulants and related histograms.
To monitor BC and BD fluctuations and structures, we
recorded probability functions of the tilt angles, such as
the probability p2(ΘA, ΘB) for finding the two angles, ΘA

and ΘB, at neighbouring sites and the probability p(Θ)
for encountering the tilt angle Θ. The probabilities may
be defined ‘locally’ by taking into account the orienta-
tions of individual spins, or ‘globally’ by computing av-
erage spin orientations on the two sublattices. Obviously,
the two definitions coincide at zero temperature.

To determine transition temperatures, the finite-size
dependence of various quantities has been recorded, with
reasonable extrapolations to the thermodynamic limit
(the exact finite-size dependence is not always known).
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Fig. 4. Phase diagram of the XXZ antiferromagnet with a
single-ion anisotropy, ∆ = 0.8 and D/J = −0.2.

The estimates we obtained agreed within the error bars
shown in the phase diagrams.

3.1 XXZ antiferromagnets with single-ion anisotropy

Let us consider first the case of a negative single-ion
anisotropy, D < 0, enhancing the exchange anisotropy.
In this case, there are no ground states of BC type.
In Figure 4, a typical phase diagram is depicted, where
D/J = −0.2.

At low temperatures, we observe a transition of first
order separating the AF and SF phases. Evidence for that
kind of phase transition has been presented before [22].
For instance, the maximum of the longitudinal staggered
susceptibility is seen to grow with system size, L, like La,
and a approaches very closely 2 already for quite small
sizes, L ≥ 10. That behaviour is characteristic for a first-
order transition with a rather small correlation length at
the transition.

Further evidence for a first-order transition may be in-
ferred from the probability p(Θ) for finding the tilt angle
Θ. Close to the transition, p(Θ) shows more and more pro-
nounced local maxima simultaneously at the values of Θ
characterising the AF phase as well as the SF phase, when
increasing the system size. Note that at least for small sys-
tem sizes, biconical fluctuations are also observed in the
transition region between the AF and SF phases, but the
relevant effect seems to be the coexistence phenomenon.

To identify the nature of the triple point, where the
AF, SF, and paramagnetic phases meet, a very fine reso-
lution, in temperature and field, is needed near that point.
This aspect, requiring, presumably, huge computational
efforts, is beyond the scope of the present study.

When applying a planar single-ion anisotropy, D > 0,
competing with the uniaxial exchange anisotropy ∆, a
very different phase diagram results. An example is shown
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Fig. 5. Phase diagram of the XXZ antiferromagnet with a
competing single-ion anisotropy, ∆ = 0.8 and D/J = 0.2.

in Figure 5 for D/J = 0.2. In this case, biconical structures
occur as ground states in a non-zero range of fields, bor-
dered by Hc1a and Hc1b, see equations (9, 10). At T > 0,
they are expected to give rise to an ordered BC phase, in
which the ordered AF and SF phases coexist [33,34]. Ac-
tually, here in two dimensions, the algebraic order of the
SF phase, is found to vanish at the boundary of the AF
and BC phases, at Hc1a, while Mz

st, the order parameter
of the AF phase, vanishes at the higher critical field Hc1b,
separating the BC and SF phases, compare to Figure 5.

Based on renormalisation group calculations [14,40–
42], the transition between the BC and SF phases may be
argued to be in the Ising universality class, while the tran-
sition between the BC and AF phases is expected to be in
the XY universality class, being the Kosterlitz-Thouless
universality class [36] in two dimensions.

This description is in accordance with our simulational
data. For instance, we monitored the size-dependence of
the maximum of the longitudinal staggered susceptibil-
ity, χmax(L), being located close to Hc1b, see Figure 6 for
kBT/J = 0.2. From the doubly logarithmic plot shown
in that figure, one observes that the effective exponent a,
defined by χmax ∝ La, seems to approach, indeed, the
asymptotic Ising value of 7/4 for rather large system sizes,
L ≥ 120. Thence, significant corrections to scaling play an
important role. In turn, at the boundary line between the
BC and AF phases the algebraic order in the transverse
staggered magnetisation, which holds in the BC phase,
gets lost. The finite-size dependence of that magnetisa-
tion, for L ≥ 40, agrees with the transition belonging to
the Kosterlitz-Thouless universality class, where the or-
der parameter vanishes at the transition in the form of a
power-law with an exponent η = 1/4.

In the BC phase the dominant interrelated tilt an-
gles are changing continuously, at fixed low temperature,
with the field. In fact, this behaviour is displayed by the
probability function p(Θ), as illustrated in Figure 7 for
the global (sublattice) spin orientations. By increasing the
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Fig. 6. Critical exponent of the staggered susceptibility χ
for the XXZ antiferromagnet with a competing single-ion
anisotropy, at kBT/J = 0.2, see Figure 5.
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Fig. 7. Histograms for the probability of the tilt angle p(Θ)
for the XXZ antiferromagnet with a competing single-ion
anisotropy, D/J = 0.2, at kBT/J = 0.2, at the fields given
in the inset. Lattices with 802 spins are simulated. Note that
the area under the curve has been normalised to be one.

field, at kBT/J = 0.2, the peak positions correspond first
to the AF structure, shifting gradually towards each other,
reflecting BC structures, and finally collapsing in one peak
characterising the SF phase.

As seen in Figure 5, the extent of the BC phase shrinks
with increasing temperature. Eventually, the BC phase
may terminate at a tetracritical point [14,34,40–42], where
the AF, SF, BC, and paramagnetic phases meet. Because
the phase boundaries seem to meet there with common
tangents, we give here only a rough estimate for the
case depicted in Figure 5 (D/J = 0.2 and ∆ = 0.8),
kBTtetra/J = 0.35 ± 0.05. A more precise location and
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an analysis of its critical properties seem to require enor-
mous computational efforts.

3.2 Anisotropic XY antiferromagnet

Finally, let us consider the anisotropic XY model, setting
the exchange anisotropy ∆ = 0.8. Its phase diagram is
depicted in Figure 8.

The topology of the phase diagram looks like in the
XXZ case [16,17,19]. The AF and SF boundary lines ap-
proach each other very closely near the maximum of the
AF phase boundary in the (T, H)-plane. Accordingly, at
low temperatures, there seems to be either a direct tran-
sition between the AF and SF phases, or two separate
transitions with an extremely narrow intervening phase
may occur. At zero temperature and H = Hc1(= 2.4J),
the highly degenerate ground state comprises SF, AF, and
bidirectional structures.

Away from that intriguing transition region, see Fig-
ure 8, one expects the transitions between the paramag-
netic and the AF as well as the SF phases to be in the Ising
universality class, because in the SF phase of the XY anti-
ferromagnet, there is just one ordering component, the y-
component. This consideration is confirmed by the Monte
Carlo data for the specific heat (where the peak at the AF
phase boundary gets rather weak on approach to the tran-
sition region) and for the staggered susceptibilities. The
quantities exhibit critical behaviour of Ising-type, as fol-
lows from the corresponding effective exponents describing
size dependences of the various peak heights.

In the transition region of the AF and SF phases, BD
fluctuations dominate, as one may conveniently infer from
the (local) probability distribution p2(ΘA, ΘB) for finding
the two tilt angles at neighbouring sites, i.e. for the two
different sublattices. Typical results are depicted in Fig-
ure 9, showing the behaviour of p2 in a grayscale repre-

Fig. 9. Probability p2(θA, θB) for the anisotropic XY antifer-
romagnet with ∆ = 0.8 for a system with 100 × 100 lattice
sites near the transition region between the AF and SF phases
at kBT/J = 0.4 and H/J = (a) 2.40, (b) 2.4136, (c) 2.4138,
and (d) 2.43. p2(θA, θB) is proportional to the grayscale. The
superimposed solid line depicts the relation between the two
tilt angles in the ground state.

sentation, at fixed temperature, kBT/J = 0.4 and differ-
ent fields, somewhat below and above the, possibly, two
closeby transitions as well as in their immediate vicin-
ity. Indeed, at the low field, see Figure 9a, one finds a
distribution corresponding to the AF phase, with peaks
at ΘA/B = 0, π. At the high field, Figure 9d, there is a
distribution typical for the SF phase, with peaks at the
spin-flop tilt angle. Note that the local maxima in p2 fol-
low closely the line describing the dependence of the two
tilt angles in the degenerate ground state, equation (6),
albeit the probability of these BD structures is low com-
pared to those of the AF and SF, resp., structures, see
Figures 9a and 9d. In other words, thermal fluctuations
driving the system away from the AF or SF structures are
rather weak and, predominantly, of BD type.

In the immediate vicinity of the transitions, see Fig-
ures 9b and 9c, the BD fluctuations and structures clearly
dominate. Now, all those degenerate bidirectional struc-
tures occur simultaneously with (almost) equal probabil-
ity, i.e. along the line of maxima p2 is (almost) constant.
Actually, it is also interesting to monitor the time evolu-
tion of Monte Carlo configurations and of the probability
p(Θ) in those configurations. One notices that at a given
time of the simulation a concrete combination of interre-
lated tilt angles prevails. As Monte Carlo time evolves,
other combinations in accordance with the ground state
degeneracy prevail, leading to the behaviour depicted in
Figure 9. Obviously, this is is marked contrast to the sit-
uation in the ordered biconical phase at fixed field and
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temperature. There, after equilibration, just one combi-
nation of tilt angles seems to dominate during the entire
simulation, see Figure 7.

Note that in the transition region at higher tempera-
tures, analysing systems of fixed size, say, L = 100 (see
Fig. 9), the various BD structures tend to occur simul-
taneously in a single MC configuration. Thence, for each
configuration, p(Θ) has a shape quite similar to that in
the degenerate ground state. This observation may be ex-
plained by a smaller correlation length. Typically, when
increasing the system size, the region of (almost) constant
values of p2 along the line of local maxima shrinks some-
what. Certainly, further systematic studies of the time
scales and temperature as well as size dependences related
to the BD structures would be desirable.

Critical phenomena in the transition region between
the AF and SF phases have been studied also by analysing
effective exponents. We did that for the staggered suscep-
tibilities and the specific heat. Results are compatible with
Ising-type criticality, but rather large corrections to scal-
ing had to be presumed. For example, at H/J = 2.44 and
0.54 < kBT/J < 0.57, see Figure 8, the effective critical
exponents for describing the size-dependences of the peak
height for the staggered susceptibilities are about 1.8 to
1.85, largely independent of system size. The supposedly
rather strong corrections to scaling may be due to very
large correlation lengths in that region, and the asymp-
totics may be reached only for very large systems.

In any event, the simulational data seem to suggest for
the anisotropic XY antiferromagnet the existence of an
extremely narrow, disordered phase, intervening between
the AF and SF phases, like in the XXZ case [16,17]. That
intermediate phase is dominated by all the, in the ground
state completely degenerate, bidirectional fluctuations. In-
deed, we found no evidence for a direct transition of first
order between the AF and SF phases. However, one may
also speculate about a direct transition with algebraic or-
der ending, at higher temperatures, at a bicritical point of
KT type, at which the AF, SF, and paramagnetic phases
meet [43]. This scenario may deserve further attention.

4 Summary

In this article, we studied two variants of the XXZ an-
tiferromagnet in a field along the easy axis on a square
lattice, by, firstly, adding a single-ion anisotropy, and by,
secondly, reducing the number of spin components to two,
yielding the anisotropic XY antiferromagnet. Large-scale
Monte Carlo simulations have been performed, augmented
by ground state calculations.

Adding a single-ion anisotropy has a drastic impact
both on ground state properties and the phase dia-
gram. Biconical structures, leading to a highly degen-
erate ground state in the XXZ antiferromagnet, are ei-
ther suppressed, when the single-ion anisotropy fosters
the uniaxial exchange anisotropy, or their degeneracy will
be lifted by stabilising them successively with changing
field, when the single-ion anisotropy introduces a planar

anisotropy. In the former case, we observe, at low temper-
atures a direct first-order transition between the AF to SF
phases, while in the other case, an ordered biconical phase
emerges, separating the AF and SF phases. The situation
in the XXZ case without single-ion anisotropy, where a
narrow disordered phase with biconical fluctuations sep-
arates the AF and SF phases, interpolates between these
two scenarios with single-ion anisotropies of different sign.

When the uniaxiality of the antiferromagnet is solely
due to a single-ion anisotropy, i.e. when the exchange
couplings are isotropic, no biconical structures occur as
ground states.

Ground state properties and the phase diagram of the
anisotropic XY antiferromagnet are observed to resemble
rather closely those of the XXZ antiferromagnet. There is
a highly degenerate ground state, at which non-collinear
structures of bidirectional type become stable. These de-
generate bidirectional structures prevail at low temper-
atures in the transition region between the AF and SF
phases, leading, presumably, to a very narrow intervening
disordered phase.

We conclude that ground state properties and phase
diagrams of classical uniaxially anisotropic antiferromag-
nets in two dimensions depend crucially on the form of the
anisotropy terms, supporting or suppressing non-collinear
structures of biconical or bidirectional type. Accordingly,
when interpreting specific experiments, care is needed. In-
deed, the XXZ model on a square lattice seems to be a rea-
sonable starting point for describing AF and SF phases.
The transition region between these two phases, however,
depends crucially on additional couplings present in real
quasi twodimensional antiferromagnets, such as Rb2MnF4

or K2NiF4 [11,21,44].
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37. L. Néel, Ann. Phys.-Paris 5, 232 (1936)
38. M. Holtschneider, Ph.D. thesis, RWTH Aachen (2007)
39. K. Binder, Z. Phys. B 43, 119 (1981); K. Binder, Phys.

Rev. Lett. 47, 693 (1981)
40. A.D. Bruce, A. Aharony, Phys. Rev. B 11, 478 (1975)
41. D. Mukamel, Phys. Rev. B 14, 1303 (1976)
42. E. Domany, M.E. Fisher, Phys. Rev. B 15, 3510 (1977)
43. D.P. Landau, private communication
44. R.J. Birgeneau, H.J. Guggenheim, G. Shirane, Phys. Rev.

B 1, 2211 (1970)


	Introduction
	Models and ground state properties
	Phase diagrams
	Summary
	References

